The sum of the first and the fifth term of an arithmetic progression (A.P) is $26$ and the product of the second by the fourth term is $160$. Find the sum of the first six terms of the progression.
Let the first term of A.P $= t_1 = a$ 
 
Let the common difference of A.P $= d$ 
 
$n^{th}$ term of A.P $= t_n = a + \left(n - 1\right) d$ 
 
$\therefore \;$ $2^{nd}$ term of A.P $= t_2 = a + d$ 
 
$4^{th}$ term of A.P $= t_4 = a + 3d$ 
 
$5^{th}$ term of A.P $= t_5 = a + 4d$ 
 
  Given:   $\;$ $t_1 + t_5 = 26$ 
 
i.e. $\;$ $a + a + 4d = 26$ 
 
i.e. $\;$ $2a + 4d = 26$ 
 
i.e. $\;$ $a + 2d = 13$ 
 
i.e. $\;$ $a = 13 - 2d$ $\;\;\; \cdots \; (1)$ 
 
  And   $\;$ $t_2 \times t_4 = 160$ 
 
i.e. $\;$ $\left(a + d\right) \left(a + 3d\right) = 160$ $\;\;\; \cdots \; (2)$ 
 
In view of equation $(1)$ equation $(2)$ becomes 
 
$\left(13 - 2d + d\right) \left(13 - 2d + 3d\right) = 160$ 
 
i.e. $\;$ $\left(13 - d\right) \left(13 + d\right) = 160$ 
 
i.e. $\;$ $169 - d^2 = 160$ 
 
i.e. $\;$ $d^2 = 9$ $\implies$ $d = \pm 3$ 
 
When $\;$ $d = +3$, $\;$ we have from equation $(1)$, $\;$ $a = 13 - 6 = 7$ 
 
When $\;$ $d = -3$, $\;$ we have from equation $(1)$, $\;$ $a = 13 + 6 = 19$ 
 
Sum of $n$ terms of A.P $= \dfrac{n \left[2a + \left(n - 1\right) d\right]}{2}$ 
 
$\therefore \;$ Sum of first six terms of A.P $= S_6 = \dfrac{6 \times \left[2a + 5d\right]}{2} = 3 \left[2a + 5d\right]$ 
 
  Case 1:   $\;$ When $a = 7, \; d = +3$, $\;$ $S_6 = 3 \times \left[2 \times 7 + 5 \times 3\right] = 87$ 
 
  Case 2:   $\;$ When $a = 19, \; d = -3$, $\;$ $S_6 = 3 \times \left[2 \times 19 - 5 \times 3\right] = 69$