The sum of the squares of the fifth and the eleventh term of an arithmetic progression (A.P) is $3$ and the product of the second by the fourteenth term is equal to $k$. Find the product of the first by the fifteenth term of the progression.
Let the first term of A.P $= t_1 = a$ 
Let the common difference of A.P $= d$ 
$n^{th}$ term of A.P $= t_n = a + \left(n - 1\right) d$ 
$\therefore \;$ $2^{nd}$ term of A.P $= t_2 = a + d$ 
$5^{th}$ term of A.P $= t_5 = a + 4d$ 
$11^{th}$ term of A.P $= t_{11} = a + 10d$ 
$14^{th}$ term of A.P $= t_{14} = a + 13d$ 
  Given:   $\;$ $\left(t_5\right)^2 + \left(t_{11}\right)^2 = 3$ 
i.e. $\;$ $\left(a + 4d\right)^2 + \left(a + 10d\right)^2 = 3$ 
i.e. $\;$ $a^2 + 16d^2 + 8ad + a^2 + 100 d^2 + 20 ad = 3 $ 
i.e. $\;$ $2a^2 + 116 d^2 + 28 ad = 3$ $\;\;\; \cdots \; (1)$ 
  And   $\;$ $t_2 \times t_{14} = k$ 
i.e. $\;$ $\left(a + d\right) \left(a + 13d\right) = k$ 
i.e. $\;$ $a^2 + 13ad + ad + 13 d^2 = k$ 
i.e. $\;$ $a^2 + 13 d^2 + 14ad = k$ $\;\;\; \cdots \; (2)$ 
Multiplying equation $(2)$ with $2$ gives 
$2a^2 + 26d^2 + 28ad = 2k$ $\;\;\; \cdots \; (3)$ 
Subtracting equations $(1)$ and $(3)$ gives 
$90 d^2 = 3 - 2k$ 
i.e. $\;$ $d^2 = \dfrac{3 - 2k}{90}$ $\;\;\; \cdots \; (4)$ 
  To find:   $\;$ $t_1 \times t_{15} = a \times \left(a + 14 d\right) = a^2 + 14ad$ $\;\;\; \cdots \; (5)$ 
We have from equation $(2)$, $\;$ $a^2 + 14ad = k - 13 d^2$ 
$\begin{aligned}
\implies t_1 \times t_{15} & = k - 13 d^2 \\\\
& = k - 13 \times \left(\dfrac{3 - 2k}{90}\right) \;\;\; \left[\text{by equation (4)}\right]  \\\\
& = \dfrac{90 k - 39 + 26 k}{90} \\\\
& = \dfrac{116 k - 39}{90}
\end{aligned}$