Showing posts with label Vector Algebra. Show all posts
Showing posts with label Vector Algebra. Show all posts

Vector Algebra

Show that the four points $A, \; B, \; C, \; D$ whose position vectors are $6 \hat{i} - 7 \hat{j}$, $\;$ $16 \hat{i} - 19 \hat{j} - 4 \hat{k}$, $\;$ $3 \hat{j} - 6 \hat{k}$ and $2 \hat{i} - 5 \hat{j} + 10 \hat{k}$ respectively are coplanar.


Given: $\;$ Position vector (p.v) of point $A = 6 \hat{i} - 7 \hat{j}$

p.v of point $B = 16 \hat{i} - 19 \hat{j} - 4 \hat{k}$

p.v of point $C = 3 \hat{j} - 6 \hat{k}$

p.v of point $D = 2 \hat{i} - 5 \hat{j} + 10 \hat{k}$

Now,

$\begin{aligned} \overrightarrow{AB} & = \text{p.v of point B} - \text{p.v of point A} \\\\ & = \left(16 \hat{i} - 19 \hat{j} - 4 \hat{k}\right) - \left(6 \hat{i} - 7 \hat{j}\right) \\\\ & = 10 \hat{i} - 12 \hat{j} - 4 \hat{k} \end{aligned}$

$\begin{aligned} \overrightarrow{AC} & = \text{p.v of point C} - \text{p.v of point A} \\\\ & = \left(3 \hat{j} - 6 \hat{k}\right) - \left(6 \hat{i} - 7 \hat{j}\right) \\\\ & = -6 \hat{i} + 10 \hat{j} - 6 \hat{k} \end{aligned}$

$\begin{aligned} \overrightarrow{AD} & = \text{p.v of point D} - \text{p.v of point A} \\\\ & = \left(2 \hat{i} - 5 \hat{j} + 10 \hat{k}\right) - \left(6 \hat{i} - 7 \hat{j}\right) \\\\ & = -4 \hat{i} + 2 \hat{j} + 10 \hat{k} \end{aligned}$

Scalar triple product of the vectors $\overrightarrow{AB}$, $\overrightarrow{AC}$ and $\overrightarrow{AD}$ is

$\begin{aligned} \left[\overrightarrow{AB} \;\; \overrightarrow{AC} \;\; \overrightarrow{AD}\right] & = \begin{vmatrix} 10 & - 12 & -4 \\ - 6 & 10 & -6 \\ -4 & 2 & 10 \end{vmatrix} \\\\ & = 10 \left(100 + 12\right) + 12 \left(- 60 - 24\right) - 4 \left(- 12 + 40\right) \\\\ & = 1120 - 1008 - 112 \\\\ & = 0 \end{aligned}$

$\because \;$ $\left[\overrightarrow{AB} \;\; \overrightarrow{AC} \;\; \overrightarrow{AD}\right] = 0$ $\implies$ Vectors $\overrightarrow{AB}$, $\overrightarrow{AC}$ and $\overrightarrow{AD}$ are coplanar.

$\implies$ Points $A, \; B, \; C$ and $D$ are coplanar.

Vector Algebra

If $\;$ $A \left(-1, 4, -3\right)$ $\;$ is one end of diameter $AB$ of the sphere $\;$ $x^2 + y^2 + z^2 -3x -2y + 2z - 15 = 0$ $\;$ then find the coordinates of $B$.


Equation of given sphere: $\;$ $x^2 + y^2 + z^2 - 3x -2y + 2z - 15 = 0$ $\;\;\; \cdots \; (1)$

Comparing equation $(1)$ with the general equation of sphere

$x^2 + y^2 + z^2 + 2ux + 2 vy + 2 wz + d = 0$ $\;$ gives

$u = \dfrac{-3}{2}, \;\; v = -1, \;\; w = 1, \;\; d = -15$

Center of the sphere $= \left(-u, -v, -w\right) = \left(\dfrac{3}{2}, 1, -1\right)$

Let the coordinates of point $B$ be $\left(\alpha, \beta, \gamma\right)$

$\because$ $\;$ $AB$ is the diameter of the sphere, we have

$\dfrac{-1 + \alpha}{2} = \dfrac{3}{2}$ $\implies$ $\alpha = 4$

$\dfrac{4 + \beta}{2} = 1$ $\implies$ $\beta = -2$

$\dfrac{-3 + \gamma}{2} = -1$ $\implies$ $\gamma = 1$

$\therefore$ $\;$ The coordinates of point $B$ are $\left(4, -2, 1\right)$

Vector Algebra

Find the vector and cartesian equation of the sphere on the join of the points $A$ and $B$ having position vectors $\;$ $2 \hat{i} + 6 \hat{j} - 7 \hat{k}$ $\;$ and $\;$ $-2 \hat{i} + 4 \hat{j} - 3 \hat{k}$ $\;$ respectively as diameter. Find also the center and radius of the sphere.


Position vector of point $A = \overrightarrow{a} = 2 \hat{i} + 6 \hat{j} - 7 \hat{k}$

Position vector of point $B = \overrightarrow{b} = -2 \hat{i} + 4 \hat{j} - 3 \hat{k}$

Let position vector of any point on the required sphere be $= \overrightarrow{r}$

Vector equation of the required sphere is

$\left(\overrightarrow{r} - \overrightarrow{a}\right) \cdot \left(\overrightarrow{r} - \overrightarrow{b}\right) = 0$

i.e. $\;$ $\left[\overrightarrow{r} - \left(2 \hat{i} + 6 \hat{j} - 7 \hat{k}\right)\right] \cdot \left[\overrightarrow{r} - \left(-2 \hat{i} + 4 \hat{j} - 3 \hat{k}\right)\right] = 0$ $\;\;\; \cdots \; (1)$

Equation $(1)$ is the required vector equation of the sphere.

Put $\;$ $\overrightarrow{r} = x \hat{i} + y \hat{j} + z \hat{k}$ $\;$ on equation $(1)$. We have,

$\left[\left(x \hat{i} + y \hat{j} + z \hat{k}\right) - \left(2 \hat{i} + 6 \hat{j} - 7 \hat{k}\right)\right] \cdot \left[\left(x \hat{i} + y \hat{j} + z \hat{k}\right) - \left(-2 \hat{i} + 4 \hat{j} - 3 \hat{k}\right)\right] = 0$

i.e. $\;$ $\left[\left(x - 2\right) \hat{i} + \left(y - 6\right) \hat{j} + \left(z + 7\right) \hat{k}\right] \cdot \left[\left(x + 2\right) \hat{i} + \left(y - 4\right) \hat{j} + \left(z + 3\right) \hat{k}\right] = 0$

i.e. $\;$ $x^2 - 4 + y^2 - 10 y + 24 + z^2 + 10 z + 21 = 0$

i.e. $\;$ $x^2 + y^2 + z^2 -10 y + 10z + 41 = 0$ $\;\;\; \cdots \; (2)$

Equation $(2)$ is the required cartesian equation of the sphere.

Comparing equation $(2)$ with the general equation of sphere

$x^2 + y^2 + z^2 + 2ux + 2 vy + 2 wz + d = 0$ $\;$ gives

$u = 0, \;\; v = -5, \;\; w = 5, \;\; d = 41$

Center of the sphere $= \left(-u, -v, -w\right) = \left(0, 5, -5\right)$

$\begin{aligned} \text{Radius of sphere} & = \sqrt{u^2 + v^2 + w^2 -d} \\\\ & = \sqrt{\left(0\right)^2 + \left(-5\right)^2 + \left(5\right)^2 - 41} \\\\ & = \sqrt{9} = 3 \; units \end{aligned}$

Vector Algebra

Find the vector and cartesian equation of a sphere with center having position vector $2 \hat{i} - \hat{j} + 3 \hat{k}$ and radius 4 units.


Position vector of center of sphere $= \overrightarrow{c} = 2 \hat{i} - \hat{j} + 3 \hat{k}$

Radius of sphere $= a = 4 \;$ units

Position vector of any point on the sphere $= \overrightarrow{r}$

Vector equation of sphere is: $\;$ $\left|\overrightarrow{r} - \overrightarrow{c}\right| = a$

i.e. $\;$ $\left|\overrightarrow{r} - \left(2 \hat{i} - \hat{j} + 3 \hat{k}\right)\right| = 4$ $\;\;\; \cdots \; (1)$

Equation $(1)$ is the required vector equation of the sphere.

Put $\;$ $\overrightarrow{r} = x \hat{i} + y \hat{j} + z \hat{k}$ $\;$ in equation $(1)$. We have,

$\left|\left(x \hat{i} + y \hat{j} + z \hat{k}\right) - \left(2 \hat{i} - \hat{j} + 3 \hat{k}\right) \right| = 4$

i.e. $\;$ $\left|\left(x - 2\right) \hat{i} + \left(y + 1\right) \hat{j} + \left(z - 3\right) \hat{k}\right| = 4$

i.e. $\;$ $\left(x - 2\right)^2 + \left(y + 1\right)^2 + \left(z - 3\right)^2 = 4^2$

i.e. $\;$ $x^2 + y^2 + z^2 - 2x + 2y - 6z - 2 = 0$ $\;\;\; \cdots \; (2)$

Equation $(2)$ is the required cartesian equation of the sphere.

Vector Algebra

Find the angle between the line $\overrightarrow{r} = \hat{i} + \hat{j} + 3 \hat{k} + \lambda \left(2 \hat{i} + \hat{j} - \hat{k}\right)$ and the plane $\overrightarrow{r} \cdot \left(\hat{i} + \hat{j}\right) = 1$


Equation of given line is: $\;$ $\overrightarrow{r} = \hat{i} + \hat{j} + 3 \hat{k} + \lambda \left(2 \hat{i} + \hat{j} - \hat{k}\right)$

It is of the form: $\;$ $\overrightarrow{r}= \overrightarrow{a} + \lambda \overrightarrow{b}$

Here, $\overrightarrow{b} = 2 \hat{i} + \hat{j} - \hat{k}$

Equation of the given plane is: $\;$ $\overrightarrow{r} \cdot \left(\hat{i} + \hat{j}\right) = 1$

Normal to the given plane is $\;$ $\overrightarrow{n} = \hat{i} + \hat{j}$

Let $\theta$ be the angle between the given line and the plane.

Then,

$\begin{aligned} \sin \theta & = \dfrac{\overrightarrow{b} \cdot \overrightarrow{n}}{\left|\overrightarrow{b}\right| \; \left|\overrightarrow{n}\right|} \\\\ & = \dfrac{\left(2 \hat{i} + \hat{j} - \hat{k}\right) \cdot \left(\hat{i} + \hat{j}\right)}{\sqrt{\left(2\right)^2 + \left(1\right)^2 + \left(-1\right)^2} \; \sqrt{\left(1\right)^2 + \left(1\right)^2}} \\\\ & = \dfrac{3}{2 \sqrt{3}} = \dfrac{\sqrt{3}}{2} \end{aligned}$

$\therefore$ $\;$ $\theta = \sin^{-1} \left(\dfrac{\sqrt{3}}{2}\right) = \dfrac{\pi}{3}$

Vector Algebra

The planes $\overrightarrow{r} \cdot \left(2 \hat{i} + \lambda \hat{j} - 3 \hat{k}\right) = 10$ $\;$ and $\;$ $\overrightarrow{r} \cdot \left(\lambda \hat{i} + 3 \hat{j} + \hat{k}\right) = 5$ $\;$ are perpendicular. Find $\lambda$.


The equations of the given planes are

$\overrightarrow{r} \cdot \left(2 \hat{i} + \lambda \hat{j} - 3 \hat{k}\right) = 10$ $\;\;\; \cdots \; (1a)$

$\overrightarrow{r} \cdot \left(\lambda \hat{i} + 3 \hat{j} + \hat{k}\right) = 5$ $\;\;\; \cdots \; (2a)$

The normals to the given planes are

$\overrightarrow{n_1} = 2 \hat{i} + \lambda \hat{j} - 3 \hat{k}$ $\;\;\; \cdots \; (1b)$

$\overrightarrow{n_2} = \lambda \hat{i} + 3 \hat{j} + \hat{k}$ $\;\;\; \cdots \; (2b)$

Let the angle between the planes be $\theta$.

Now, $\cos \theta = \dfrac{\overrightarrow{n_1} \cdot \overrightarrow{n_2}}{\left|\overrightarrow{n_1}\right| \left|\overrightarrow{n_2}\right|}$

$\because$ $\;$ The two planes are perpendicular, $\theta = \dfrac{\pi}{2}$ $\;$ and $\;$ $\cos \theta = 0$

$\implies$ $\overrightarrow{n_1} \cdot \overrightarrow{n_2} = 0$

i.e. $\;$ $\left(2 \hat{i} + \lambda \hat{j} - 3 \hat{k}\right) \cdot \left(\lambda \hat{i} + 3 \hat{j} + \hat{k}\right) = 0$

i.e. $\;$ $2 \lambda + 3 \lambda - 3 = 0$ $\implies$ $\lambda = \dfrac{3}{5}$

Vector Algebra

Find the angle between the planes $\;$ $2x + y -z = 9$ $\;$ and $\;$ $x + 2y + z = 7$


The given planes are

$2x + y -z = 9$ $\;\;\; \cdots \; (1a)$

$x + 2y + z = 7$ $\;\;\; \cdots \; (2a)$

The normals to the given planes are

$\overrightarrow{n_1} = 2 \hat{i} + \hat{j} - \hat{k}$ $\;\;\; \cdots \; (1b)$

$\overrightarrow{n_2} = \hat{i} + 2 \hat{j} + \hat{k}$ $\;\;\; \cdots \; (2b)$

If $\;$ $\theta$ $\;$ is the angle between the planes, then

$\begin{aligned} \cos \theta & = \dfrac{\overrightarrow{n_1} \cdot \overrightarrow{n_2}}{\left|\overrightarrow{n_1}\right| \left|\overrightarrow{n_2}\right|} \\\\ & = \dfrac{\left(2 \hat{i} + \hat{j} - \hat{k}\right) \cdot \left(\hat{i} + 2 \hat{j} + \hat{k}\right)}{\sqrt{\left(2\right)^2 + \left(1\right)^2 + \left(-1\right)^2} \; \sqrt{\left(1\right)^2 + \left(2\right)^2 + \left(1\right)^2}} \\\\ & = \dfrac{2 + 2 -1}{\sqrt{6} \; \sqrt{6}} \end{aligned}$

$\therefore$ $\;$ $\theta = \cos^{-1} \left(\dfrac{3}{6}\right) = \dfrac{\pi}{3}$

Vector Algebra

Find the distance between the parallel planes $x - y + 3z + 5 = 0$ $\;$ and $\;$ $2x - 2y + 6z + 7 = 0$


Equations of the given planes are

$x - y + 3z + 5 = 0$ $\;\;\; \cdots \; (1)$

$2x - 2y + 6z + 7 = 0$ $\implies$ $x - y + 3z + \dfrac{7}{2} = 0$ $\;\;\; \cdots \; (2)$

Equations $(1)$ and $(2)$ are of the form

$ax + by + cz + d_1 = 0$ $\;$ and $\;$ $ax + by + cz + d_2 = 0$ $\;$ respectively.

Here $\;$ $a = 1, \; b = -1, \; c = 3, \; d_1 = 5, \; d_2 = \dfrac{7}{2}$

Distance between the parallel planes $(1)$ and $(2)$ is

$\begin{aligned} \left|\dfrac{d_1 - d_2}{\sqrt{a^2 + b^2 + c^2}}\right| & = \left|\dfrac{5 - \dfrac{7}{2}}{\sqrt{\left(1\right)^2 + \left(-1\right)^2 + \left(3\right)^2}}\right| \\\\ & = \left|\dfrac{3}{2 \sqrt{1 + 1 + 9}}\right| \\\\ & = \dfrac{3}{2 \sqrt{11}} \;\; units \end{aligned}$

Vector Algebra

Find the distance from the origin to the plane $\overrightarrow{r} \cdot \left(2\hat{i} - \hat{j} + 5 \hat{k}\right) = 7$


Vector equation of given plane is: $\;$ $\overrightarrow{r} \cdot \left(2\hat{i} - \hat{j} + 5 \hat{k}\right) = 7$

$\therefore$ $\;$ The cartesian equation of the given plane is: $\;$ $2x - y + 5z = 7$ $\;\;\; \cdots \; (1)$

Equation $(1)$ is of the form $\;$ $ax + by + cz + d = 0$

where $\;$ $a = 2, \; b = -1, \; c = 5, \; d = -7$

Now, distance from the origin to the plane given by equation $(1)$ is

$\begin{aligned} \left|\dfrac{d}{\sqrt{a^2 + b^2 + c^2}}\right| & = \left|\dfrac{-7}{\sqrt{\left(2\right)^2 + \left(-1\right)^2 + \left(5\right)^2}}\right| \\\\ & = \left|\dfrac{-7}{\sqrt{4 + 1 + 25}}\right| \\\\ & = \dfrac{7}{30} \; units \end{aligned}$

Vector Algebra

Find the point of intersection of the line $\overrightarrow{r} = \left(\overrightarrow{j} - \overrightarrow{k}\right) + \lambda \left(2 \hat{i} - \hat{j} + \hat{k}\right)$ and the $xz$ plane.


Equation of given line in vector form: $\;$ $\overrightarrow{r} = \left(\overrightarrow{j} - \overrightarrow{k}\right) + \lambda \left(2 \hat{i} - \hat{j} + \hat{k}\right)$

$\therefore$ $\;$ Equation of given line in cartesian form is: $\;$ $\dfrac{x}{2} = \dfrac{y - 1}{-1} = \dfrac{z + 1}{1}$ $\;\;\; \cdots \; (1)$

The given line meets the $xz$ plane i.e. $\;$ $y = 0$

Substituting $y = 0$ in equation $(1)$ gives

$\dfrac{x}{2} = 1$ $\implies$ $x = 2$

$\dfrac{z + 1}{1} = 1$ $\implies$ $z = 0$

$\therefore$ $\;$ The point of intersection of the given line and the plane is $\;$ $\left(2, 0, 0\right)$

Vector Algebra

Can a plane be drawn through the lines $\overrightarrow{r} = \left(\hat{i} + 2 \hat{j} - 4 \hat{k}\right) + t \left(2 \hat{i} + 3 \hat{j} + 6 \hat{k}\right)$ and $\overrightarrow{r} = \left(3 \hat{i} + 3 \hat{j} - 5 \hat{k}\right) + s \left(-2 \hat{i} + 3 \hat{j} + 8 \hat{k}\right)$?


The equations of the given lines are

$L_1: \;\; \overrightarrow{r} = \left(\hat{i} + 2 \hat{j} - 4 \hat{k}\right) + t \left(2 \hat{i} + 3 \hat{j} + 6 \hat{k}\right)$

$L_2: \;\; \overrightarrow{r} = \left(3 \hat{i} + 3 \hat{j} - 5 \hat{k}\right) + s \left(-2 \hat{i} + 3 \hat{j} + 8 \hat{k}\right)$

Lines $L_1$ and $L_2$ are of the form

$\overrightarrow{r} = \overrightarrow{a_1} + t \overrightarrow{b_1}$ $\;$ and $\;$ $\overrightarrow{r}= \overrightarrow{a_2} + s \overrightarrow{b_2}$ $\;$ respectively.

Here,

$\overrightarrow{a_1} = \hat{i} + 2 \hat{j} - 4 \hat{k}$, $\;$ $\overrightarrow{b_1} = 2 \hat{i} + 3 \hat{j} + 6 \hat{k}$

$\overrightarrow{a_2} = 3 \hat{i} + 3 \hat{j} - 5 \hat{k}$, $\;$ $\overrightarrow{b_2} = -2 \hat{i} + 3 \hat{j} + 8 \hat{k}$

Now,

$\begin{aligned} \overrightarrow{a_2} - \overrightarrow{a_1} & = \left(3 \hat{i} + 3 \hat{j} - 5 \hat{k}\right) - \left(\hat{i} + 2 \hat{j} - 4 \hat{k}\right) \\\\ & = 2 \hat{i} + \hat{j} - \hat{k} \end{aligned}$

$\begin{aligned} \overrightarrow{b_1} \times \overrightarrow{b_2} & = \begin{vmatrix} \hat{i} & \hat{j} & \hat{k} \\ 2 & 3 & 6 \\ -2 & 3 & 8 \end{vmatrix} \\\\ & = \hat{i} \left(24 - 18\right) - \hat{j} \left(16 + 12\right) + \hat{k} \left(6 + 6\right) \\\\ & = 6 \hat{i} - 28 \hat{j} + 12 \hat{k} \end{aligned}$

$\begin{aligned} \left(\overrightarrow{a_2} - \overrightarrow{a_1}\right) \cdot \left(\overrightarrow{b_1} \times \overrightarrow{b_2}\right) & = \left(2 \hat{i} + \hat{j} - \hat{k}\right) \cdot \left(6 \hat{i} - 28 \hat{j} + 12 \hat{k}\right) \\\\ & = 12 - 28 - 12 = -28 \neq 0 \end{aligned}$

$\because$ $\;$ $\left(\overrightarrow{a_2} - \overrightarrow{a_1}\right) \cdot \left(\overrightarrow{b_1} \times \overrightarrow{b_2}\right) \neq 0$ $\implies$ lines $L_1$ and $L_2$ are not coplanar.

$\because$ $\;$ The given lines are not coplanar, a plane cannot be drawn through the lines $L_1$ and $L_2$.

Vector Algebra

Find the cartesian equation of the plane which contains the lines $\dfrac{x+1}{2} = \dfrac{y - 2}{-3} = \dfrac{z - 3}{4}$ and $\dfrac{x - 4}{3} = \dfrac{y - 1}{2} = z - 8$


Equations of the given lines are

$L_1: \;\; \dfrac{x+1}{2} = \dfrac{y - 2}{-3} = \dfrac{z - 3}{4}$

$L_2: \;\; \dfrac{x - 4}{3} = \dfrac{y - 1}{2} = \dfrac{z - 8}{1}$

Lines $L_1$ and $L_2$ are of the form

$\dfrac{x - x_1}{a_1} = \dfrac{y - y_1}{b_1} = \dfrac{z - z_1}{c_1}$ $\;$ and $\;$ $\dfrac{x - x_2}{a_2} = \dfrac{y - y_2}{b_2} = \dfrac{z - z_2}{c_2}$ $\;$ respectively.

Here

$x_1 = -1, \; y_1 = 2, \; z_1 = 3$; $\;$ $x_2 = 4, \; y_2 = 1, \; z_2 = 8$

$a_1 = 2, \; b_1 = -3, \; c_1 = 4$; $\;$ $a_2 = 3, \; b_2 = 2, \; c_2 = 1$

Now,

$\begin{aligned} \begin{vmatrix} x_2 - x_1 & y_2 - y_1 & z_2 - z_1 \\ a_1 & b_1 & c_1 \\ a_2 & b_2 & c_2 \end{vmatrix} & = \begin{vmatrix} 5 & -1 & 5 \\ 2 & -3 & 4 \\ 3 & 2 & 1 \end{vmatrix} \\\\ & = 5 \left(-3 - 8\right) + \left(2 - 12\right) + 5 \left(4 + 9\right) \\\\ & = -55 - 10 + 65 = 0 \end{aligned}$

$\therefore$ $\;$ The given lines are coplanar.

$\therefore$ $\;$ The equation of plane containing the given lines is

$\begin{vmatrix} x - x_1 & y - y_1 & z - z_1 \\ a_1 & b_1 & c_1 \\ a_2 & b_2 & c_2 \end{vmatrix} = 0$

i.e. $\;$ $\begin{vmatrix} x +1 & y - 2 & z - 3 \\ 2 & -3 & 4 \\ 3 & 2 & 1 \end{vmatrix} = 0$

i.e. $\;$ $\left(x + 1\right) \left(-3 - 8\right) - \left(y - 2\right) \left(2 - 12\right) + \left(z - 3\right) \left(4 + 9\right) = 0$

i.e. $\;$ $- 11x + 10 y + 13 z - 70 = 0$

i.e. $\;$ $11x - 10 y - 13 z + 70 = 0$

Vector Algebra

Find the parametric form of vector equation and cartesian equation of the plane passing through the points with position vectors $\;$ $3 \hat{i} + 4 \hat{j} + 2 \hat{k}$, $\;$ $2 \hat{i} - 2 \hat{j} - \hat{k}$ $\;$ and $\;$ $7 \hat{i} + \hat{k}$.


Let the position vectors of the three given points be

$\overrightarrow{a} = 3 \hat{i} + 4 \hat{j} + 2 \hat{k}$, $\;\;\;$ $\overrightarrow{b} = 2 \hat{i} - 2 \hat{j} - \hat{k}$, $\;\;\;$ $\overrightarrow{c} = 7 \hat{i} + \hat{k}$

Let $\;$ $\lambda$ $\;$ and $\;$ $\mu$ $\;$ be two scalars.

Parametric form of vector equation of a plane passing through three non-collinear points is

$\overrightarrow{r} = \left(1 - \lambda - \mu\right) \overrightarrow{a} + \lambda \overrightarrow{b} + \mu \overrightarrow{c}$

$\begin{aligned} i.e. \; \overrightarrow{r} & = \left(1 - \lambda - \mu\right) \left(3 \hat{i} + 4 \hat{j} + 2 \hat{k}\right) + \lambda \left(2 \hat{i} - 2 \hat{j} - \hat{k}\right) + \mu \left(7 \hat{i} + \hat{k}\right) \\\\ & = \left(3 \hat{i} + 4 \hat{j} + 2 \hat{k}\right) + \lambda \left[\left(2 \hat{i} - 2 \hat{j} - \hat{k}\right) - \left(3 \hat{i} + 4 \hat{j} + 2 \hat{k}\right)\right] \\\\ & \hspace{4cm} + \mu \left[\left(7 \hat{i} + \hat{k}\right) - \left(3 \hat{i} + 4 \hat{j} + 2 \hat{k}\right)\right] \\\\ & = \left(3 \hat{i} + 4 \hat{j} + 2 \hat{k}\right) + \lambda \left(- \hat{i} - 6 \hat{j} - 3 \hat{k}\right) + \mu \left(4 \hat{i} - 4 \hat{j} - \hat{k}\right) \;\;\; \cdots \; (1) \end{aligned}$

Equation $(1)$ is the parametric form of vector equation of the required plane.

Position vector $\overrightarrow{a}$ represents the point $A \left(x_1, y_1, z_1\right) = \left(3, 4, 2\right)$

Position vector $\overrightarrow{b}$ represents the point $B \left(x_2, y_2, z_2\right) = \left(2, -2, -1\right)$

Position vector $\overrightarrow{c}$ represents the point $C \left(x_3, y_3, z_3\right) = \left(7, 0, 1\right)$

Cartesian equation of the required plane is

$\begin{vmatrix} x - x_1 & y - y_1 & z - z_1 \\ x_2 - x_1 & y_2 - y_1 & z_2 - z_1 \\ x_3 - x_1 & y_3 - y_1 & z_3 - z_1 \end{vmatrix} = 0$

i.e. $\;$ $\begin{vmatrix} x - 3 & y - 4 & z - 2 \\ 2 - 3 & -2 - 4 & -1 - 2 \\ 7 - 3 & 0 - 4 & 1 - 2 \end{vmatrix} = 0$

i.e. $\;$ $\begin{vmatrix} x - 3 & y - 4 & z - 2 \\ -1 & -6 & -3 \\ 4 & -4 & -1 \end{vmatrix} = 0$

i.e. $\;$ $\left(x - 3\right) \left(6 - 12\right) - \left(y - 4\right) \left(1 + 12\right) + \left(z - 2\right) \left(4 + 24\right) = 0$

i.e. $\;$ $-6x - 13 y + 28 z + 14 = 0$

i.e. $\;$ $6x + 13 y - 28 z - 14 = 0$ $\;\;\; \cdots \; (2)$

Equation $(2)$ is the cartesian equation of the required plane.

Vector Algebra

Find the parametric vector equation and cartesian equation of the plane through the points $\left(1,2,3\right)$ and $\left(2,3,1\right)$ and perpendicular to the plane $3x - 2y + 4z - 5 = 0$.


Let the given points be $A \left(x_1, y_1, z_1\right) = \left(1,2,3\right)$ and $B \left(x_2, y_2, z_2\right) = \left(2, 3, 1\right)$

position vector of point $A = \overrightarrow{a} = \hat{i} + 2 \hat{j} + 3 \hat{k}$ $\;\;\; \cdots \; (1a)$

position vector of point $B = \overrightarrow{b} = 2 \hat{i} + 3 \hat{j} + \hat{k}$ $\;\;\; \cdots \; (1b)$

Equation of given plane is $3x - 2y + 4z - 5 = 0$ $\;\;\; \cdots \; (2a)$

$\because$ $\;$ The given plane is perpendicular to the required plane, the normal vector to the given plane is parallel to the required plane.

Normal vector to the given plane [equation $(2a)$] is

$\overrightarrow{v} = 3 \hat{i} - 2 \hat{j} + 4 \hat{k}$ $\;\;\; \cdots \; (2b)$

Parametric vector equation of a plane passing through two given points [$(1a)$ and $(1b)$] and parallel to the vector $(2b)$ is

$\overrightarrow{r} = \left(1 - s\right) \overrightarrow{a} + s \overrightarrow{b} + t \overrightarrow{v}$ $\;\;$ where $s$ and $t$ are scalars.

$\begin{aligned} i.e. \;\; \overrightarrow{r} & = \left(1 - s\right) \left(\hat{i} + 2 \hat{j} + 3 \hat{k}\right) + s \left(2 \hat{i} + 3 \hat{j} + \hat{k}\right) + t \left(3 \hat{i} - 2 \hat{j} + 4 \hat{k}\right) \\\\ & = \left(\hat{i} + 2 \hat{j} + 3 \hat{k}\right) + s \left[\left(2 \hat{i} + 3 \hat{j} + \hat{k}\right) - \left(\hat{i} + 2 \hat{j} + 3 \hat{k}\right)\right] + t \left(3 \hat{i} - 2 \hat{j} + 4 \hat{k}\right) \\\\ & = \left(\hat{i} + 2 \hat{j} + 3 \hat{k}\right) + s \left(\hat{i} + \hat{j} - 2 \hat{k}\right) + t \left(3 \hat{i} - 2 \hat{j} + 4 \hat{k}\right) \;\;\; \cdots \; (3) \end{aligned}$

Equation $(3)$ is the parametric vector equation of the required plane.

For the given plane [equation $(2a)$], $\;$ $\ell_1 = 3, \; m_1 = -2, \; n_1 = 4$

Cartesian equation of the plane is

$\begin{vmatrix} x - x_1 & y - y_1 & z - z_1 \\ x_2 - x_1 & y_2 - y_1 & z_2 - z_1 \\ \ell_1 & m_1 & n_1 \end{vmatrix} = 0$

i.e. $\;$ $\begin{vmatrix} x - 1 & y - 2 & z - 3 \\ 2 - 1 & 3 - 2 & 1 - 3 \\ 3 & -2 & 4 \end{vmatrix} = 0$

i.e. $\;$ $\begin{vmatrix} x - 1 & y - 2 & z - 3 \\ 1 & 1 & -2 \\ 3 & -2 & 4 \end{vmatrix} = 0$

i.e. $\;$ $\left(x - 1\right) \left(4 - 4\right) - \left(y - 2\right) \left(4 + 6\right) + \left(z - 3\right) \left(-2 -3\right) = 0$

i.e. $\;$ $- 10 \left(y - 2\right) - 5 \left(z - 3\right) = 0$

i.e. $\;$ $2y + z - 7 = 0$ $\;\;\; \cdots \; (4)$

Equation $(4)$ is the cartesian equation of the required plane.

Vector Algebra

Find the non-parametric vector equation, parametric vector equation and cartesian equation of the plane through the point $\left(-1,3,2\right)$ and perpendicular to the planes $x + 2y + 2z = 5$ and $3x + y + 2z = 8$


Non-parametric vector equation of plane

The equation of a plane passing through a given point $\overrightarrow{a}$ and perpendicular to two given planes $\overrightarrow{r} \cdot \overrightarrow{n_1} = d_1$ and $\overrightarrow{r} \cdot \overrightarrow{n_2} = d_2$ is

$\left(\overrightarrow{r} - \overrightarrow{a}\right) \cdot \left(\overrightarrow{n_1} \times \overrightarrow{n_2}\right) = 0$

The required plane pass through the point $A \left(x_1,y_1,z_1\right) = \left(-1,3,2\right)$

$\therefore$ $\;$ position vector of point $A$ is $\overrightarrow{a} = - \hat{i} + 3 \hat{j} + 2 \hat{k}$

Cartesian equations of given planes are

$x + 2y + 2z = 5$ $\;\;\; \cdots \; (1a)$

$3x + y + 2z = 8$ $\;\;\; \cdots \; (2a)$

$\therefore$ $\;$ Vector equations of the given planes are

$\overrightarrow{r} \cdot \left(\hat{i} + 2 \hat{j} + 2 \hat{k}\right) = 5$ $\;\;\; \cdots \; (1b)$

$\overrightarrow{r} \cdot \left(3 \hat{i} + \hat{j} + 2 \hat{k}\right) = 8$ $\;\;\; \cdots \; (2b)$

Let $\;\;$ $\overrightarrow{n_1} = \hat{i} + 2 \hat{j} + 2 \hat{k}$; $\;\;$ $\overrightarrow{n_2} = 3 \hat{i} + \hat{j} + 2 \hat{k}$; $\;\;$ $d_1 = 5$; $\;\;$ $d_2 = 8$

Now,

$\begin{aligned} \overrightarrow{n_1} \times \overrightarrow{n_2} & = \begin{vmatrix} \hat{i} & \hat{j} & \hat{k} \\ 1 & 2 & 2 \\ 3 & 1 & 2 \end{vmatrix} \\\\ & = 2 \hat{i} + 4 \hat{j} - 5 \hat{k} \end{aligned}$

$\therefore$ $\;$ The non-parametric vector equation of the required plane is

$\left[\overrightarrow{r} - \left(- \hat{i} + 3 \hat{j} + 2 \hat{k}\right)\right] \cdot \left(2 \hat{i} + 4 \hat{j} - 5 \hat{k}\right) = 0$

i.e. $\;$ $\overrightarrow{r} \cdot \left(2 \hat{i} + 4 \hat{j} - 5 \hat{k}\right) = \left(- \hat{i} + 3 \hat{j} + 2 \hat{k}\right) \cdot \left(2 \hat{i} + 4 \hat{j} - 5 \hat{k}\right)$

i.e. $\;$ $\overrightarrow{r} \cdot \left(2 \hat{i} + 4 \hat{j} - 5 \hat{k}\right) = 0$

Parametric vector equation of plane

The normal vector to plane $(1a)$ is $\;\;$ $\overrightarrow{u} = \hat{i} + 2 \hat{j} + 2 \hat{k}$ $\;\;\; \cdots \; (1c)$

The normal vector to plane $(1a)$ is $\;\;$ $\overrightarrow{v} = 3 \hat{i} + \hat{j} + 2 \hat{k}$ $\;\;\; \cdots \; (2c)$

$\therefore$ $\;$ The required plane passes through the point $A$ and is parallel to the vectors $(1c)$ and $(2c)$.

$\therefore$ $\;$ Parametric vector equation of the plane is

$\overrightarrow{r} = \overrightarrow{a} + \lambda \overrightarrow{u} + \mu \overrightarrow{v}$ $\;\;$ [$\lambda$ and $\mu$ are scalars]

i.e. $\;$ $\overrightarrow{r} = \left(- \hat{i} + 3 \hat{j} + 2 \hat{k}\right) + \lambda \left(\hat{i} + 2 \hat{j} + 2 \hat{k}\right) + \mu \left(3 \hat{i} + \hat{j} + 2 \hat{k}\right)$

Cartesian equation of plane

Equations of given planes are $(1a)$ and $(2a)$.

They are of the form $\;\;$ $a_1 x + b_y + c_1z + d_1 = 0$ $\;$ and $\;$ $a_2 x + b_2 y + c_2 z + d_2 = 0$ respectively.

$\therefore$ $\;$ $a_1 = 1, \; b_1 = 2, \; c_1 = 2, \; d_1 = -5$ $\;$ and $\;$ $a_2 = 3, \; b_2 = 1, \; c_2 = 2, \; d_2 = - 8$

Equation of the required plane through point $A$ is

$a \left(x + 1\right) + b \left(y - 3\right) + c \left(z - 2\right) = 0$ $\;\;\; \cdots \; (3a)$

$\because$ $\;$ The required plane is perpendicular to the given planes, we have

$aa_1 + bb_1 + c c_1 = 0$

i.e. $\;$ $a + 2b + 2c = 0$ $\;\;\; \cdots \; (3b)$

and $\;$ $a a_2 + b b_2 + c c_2 = 0$

i.e. $\;$ $3a + b + 2c = 0$ $\;\;\; \cdots \; (3c)$

Eliminating $a$, $b$ and $c$ from equations $(3a)$, $(3b)$ and $(3c)$, the required equation of plane is

$\begin{vmatrix} x + 1 & y - 3 & z - 2 \\ 1 & 2 & 2 \\ 3 & 1 & 2 \end{vmatrix} = 0$

i.e. $\;$ $2 \left(x + 1\right) + 4 \left(y - 3\right) - 5 \left(z - 2\right) = 0$

i.e. $\;$ $2x + 4y - 5z = 0$

Vector Algebra

Find the vector and cartesian equation of the plane through the point $\left(1,3,2\right)$ and parallel to the lines $\dfrac{x + 1}{2} = \dfrac{y + 2}{-1} = \dfrac{z+3}{3}$ and $\dfrac{x - 2}{1} = \dfrac{y + 1}{2} = \dfrac{z + 2}{2}$


The required plane passes through the point $A \left(1,3,2\right)$

$\therefore$ $\;$ position vector of point $A$ is $\overrightarrow{a} = \hat{i} + 3 \hat{j} + 2 \hat{k}$

The given equations of lines are

$\dfrac{x + 1}{2} = \dfrac{y + 2}{-1} = \dfrac{z+3}{3}$ $\;\;\; \cdots \; (1a)$

$\dfrac{x - 2}{1} = \dfrac{y + 1}{2} = \dfrac{z + 2}{2}$ $\;\;\; \cdots \; (2a)$

Vector form of equation $(1a)$ is

$\overrightarrow{r} = \left(-\hat{i}-2 \hat{j} -3 \hat{k}\right) + \lambda \left(2 \hat{i} - \hat{j} + 3 \hat{k}\right)$ $\;\;\; \cdots \; (1b)$

Vector form of equation $(2a)$ is

$\overrightarrow{r} = \left(2 \hat{i} - \hat{j} - 2 \hat{k}\right) + \mu \left(\hat{i} + 2 \hat{j} + 2 \hat{k}\right)$ $\;\;\; \cdots \; (2b)$

Required vector equation of plane in vector form is

$\overrightarrow{r} = \overrightarrow{a} + s \overrightarrow{u} + t \overrightarrow{v}$

where $\;$ $\overrightarrow{u} = 2 \hat{i} - \hat{j} + 3 \hat{k}$ $\;$ and $\;$ $\overrightarrow{v} = \hat{i} + 2 \hat{j} + 2 \hat{k}$; $\;\;\;$ $s$ and $t$ are scalars.

i.e. $\;$ $\overrightarrow{r} = \hat{i} + 3 \hat{j} + 2 \hat{k} + s \left(2 \hat{i} - \hat{j} + 3 \hat{k}\right) + t \left(\hat{i} + 2 \hat{j} + 2 \hat{k}\right)$

Now,

$A \left(x_1, y_1, z_1\right) = \left(1, 3, 2\right)$

direction ratios of line $(1a)$ are $\; \ell_1 = 2, \; m_1 = -1, \; n_1 = 3$

direction ratios of line $(2a)$ are $\; \ell_2 = 1, \; m_2 = 2, \; n_2 = 2$

Equation of the required plane in cartesian coordinates is

$\begin{vmatrix} x - x_1 & y - y_1 & z - z_1 \\ \ell_1 & m_1 & n_1 \\ \ell_2 & m_2 & n_2 \end{vmatrix} = 0$

i.e. $\;$ $\begin{vmatrix} x - 1 & y - 3 & z - 2 \\ 2 & -1 & 3 \\ 1 & 2 & 2 \end{vmatrix} = 0$

i.e. $\;$ $\left(x - 1\right) \left(-2 - 6\right) - \left(y - 3\right) \left(4 - 3\right) + \left(z - 2\right) \left(4 + 1\right) = 0$

i.e. $\;$ $-8x + 8 - y + 3 + 5z - 10 =0$

i.e. $\;$ $8x + y - 5z = 1$

Vector Algebra

Find the cartesian equation of the plane containing the line $\dfrac{x - 2}{2} = \dfrac{y - 2}{3} = \dfrac{z - 1}{3}$ and parallel to the line $\dfrac{x + 1}{3} = \dfrac{y - 1}{2} = \dfrac{z + 1}{1}$


The equation of any plane through the line $\;$ $\dfrac{x - 2}{2} = \dfrac{y - 2}{3} = \dfrac{z -1}{3}$ $\;$ is

$A \left(x - 2\right) + B \left(y - 2\right) + C \left(z - 1\right) = 0$ $\;\;\; \cdots \; (1)$

where $\;$ $2 A + 3 B + 3 C = 0$ $\;\;\; \cdots \; (2)$

$\because$ $\;$ Plane given by equation $(1)$ is parallel to the line $\;$ $\dfrac{x + 1}{3} = \dfrac{y - 1}{2} = \dfrac{z + 1}{1}$,

the normal to equation $(1)$ is perpendicular to $(1)$ and has direction ratios $3, \; 2, \; 1$.

$\therefore$ $\;$ $3 A + 2 B + C = 0$ $\;\;\; \cdots \; (3)$

Solving equations $(2)$ and $(3)$ we get

$\dfrac{A}{\begin{vmatrix} 3 & 3 \\ 2 & 1 \end{vmatrix}} = \dfrac{-B}{\begin{vmatrix} 2 & 3 \\ 3 & 1 \end{vmatrix}} = \dfrac{C}{\begin{vmatrix} 2 & 3 \\ 3 & 2 \end{vmatrix}} = k$ (say)

i.e. $\dfrac{A}{3 - 6} = \dfrac{B}{9 - 2} = \dfrac{C}{4 - 9} = k$

i.e. $A = - 3k$, $\;$ $B = 7 k$, $\;$ $C = -5k$

Substituting the values of $A$, $B$ and $C$ in equation $(1)$, we have

$-3k \left(x - 2\right) + 7 k \left(y - 2\right) - 5 k \left(z - 1\right) = 0$

$\implies$ $-3x + 7y - 5z = 3$

i.e. $\;$ $3x - 7y + 5z + 3 = 0$ $\;\;\; \cdots \; (4)$

Equation $(4)$ is the required equation of the plane in cartesian form.

Vector Algebra

The foot of the perpendicular drawn from the origin to a plane is $\left(8, -4, 3\right)$. Find the equation of the plane.



Let $O$ be the origin and $N \left(8, -4, 3\right)$ be the foot of perpendicular from $O$ to the given plane.

Let $P \left(x, y, z\right)$ be an arbitrary point on the plane.

Then,

direction ratios of $\overrightarrow{NP}$ are: $\;$ $\left(x - 8\right)$, $\left(y + 4\right)$, $\left(z - 3\right)$

direction ratios of $\overrightarrow{ON}$ are: $\;$ $8, \; -4, \; 3$

But $\overrightarrow{ON} \perp \overrightarrow{NP}$.

$\therefore$ $\;$ $\overrightarrow{ON} \cdot \overrightarrow{NP} = 0$

i.e. $\;$ $8 \left(x - 8\right) - 4 \left(y + 4\right) + 3 \left(z - 3\right) = 0$

$\therefore$ $\;$ the required equation of the plane is

$8x - 4y + 3z = 89$

Vector Algebra

Find the length of the perpendicular from the origin to the plane $\;$ $\overrightarrow{r} \cdot \left(3 \hat{i} + 4 \hat{j} + 12 \hat{k}\right) = 26$


Equation of the given plane is $\;$ $\overrightarrow{r} \cdot \left(3 \hat{i} + 4 \hat{j} + 12 \hat{k}\right) = 26$

which is of the form $\;$ $\overrightarrow{r} \cdot \overrightarrow{n} = d$

where $\;$ $\overrightarrow{n} = 3 \hat{i} + 4 \hat{j} + 12 \hat{k}$, $\;$ $d = 26 > 0$

Length of the perpendicular from the origin to the plane is

$\dfrac{d}{\left|\overrightarrow{n}\right|} = \dfrac{26}{\sqrt{\left(3\right)^2 + \left(4\right)^2 + \left(12\right)^2}} = \dfrac{26}{13} = 2$ units

Vector Algebra

Find the unit normal vectors to the plane $2x - y + 2z = 5$.


Equation of the plane is

$2x - y + 2z = 5$

Its vector equation is

$\overrightarrow{r} \cdot \left(2 \hat{i} - \hat{j} + 2 \hat{k}\right) = 5$ $\;\;\;$ [$\overrightarrow{r}$ is a vector lying in the plane.]

A normal vector to the plane is

$\overrightarrow{n} = 2 \hat{i} - \hat{j} + 2 \hat{k}$

$\therefore$ $\;$ Unit normal vectors to the plane are

$\begin{aligned} \hat{n} & = \pm \left(\dfrac{\overrightarrow{n}}{\left|\overrightarrow{n}\right|}\right) \\\\ & = \pm \left(\dfrac{2 \hat{i} - \hat{j} + 2 \hat{k}}{\sqrt{\left(2\right)^2 + \left(-1\right)^2 + \left(2\right)^2}}\right) \\\\ & = \pm \left(\dfrac{2 \hat{i} - \hat{j} + 2 \hat{k}}{3}\right) \end{aligned}$