Solve the following system of equations: $\begin{cases} 5 \log_2 x = \log_2 y^3 - \log_{\sqrt{2}} 2 \\ \log_2 y = 8 - \log_{\sqrt{2}} x \end{cases}$
Given system of equations: 
$5 \log_2 x = \log_2 y^3 - \log_{\sqrt{2}} 2$ $\;\;\; \cdots \; (1)$ 
$\log_2 y = 8 - \log_{\sqrt{2}} x$ $\;\;\; \cdots \; (2)$ 
We have from equation $(1)$, $\;$ $5 \log_2 x = 3 \log_2 y - \log_{\sqrt{2}} \left(\sqrt{2}\right)^2$ 
i.e. $\;$ $5 \log_2 x - 3 \log_2 y = - 2$ $\;\;\; \cdots \; (3)$ 
We have from equation $(2)$, $\;$ $\log_2 y = 8 - \dfrac{\log_2 x}{\log_2 \sqrt{2}}$ 
i.e. $\;$ $\log_2 y = 8 - \dfrac{\log_2 x}{\log_2 2^{\frac{1}{2}}}$ 
i.e. $\;$ $\log_2 y = 8 - \dfrac{\log_2 x}{\dfrac{1}{2}}$ 
i.e. $\;$ $2 \log_2 x + \log_2 y = 8$ $\;\;\; \cdots \; (4)$ 
Multiplying equation $(4)$ by $3$ gives 
$6 \log_2 x + 3 \log_2 y = 24$ $\;\;\; \cdots \; (5)$ 
Adding equations $(3)$ and $(5)$ gives 
$11 \log_2 x = 22$ 
i.e. $\;$ $\log_2 x = 2$ 
i.e. $\;$ $x = 2^2 = 4$ 
Substituting the value of $x$ in equation $(4)$ gives 
$2 \log_2 4 + \log_2 y = 8$ 
i.e. $\;$ $\log_2 y = 8 - 2 \log_2 2^2$ 
i.e. $\;$ $\log_2 y = 8 - 2 \times 2 = 4$ 
i.e. $\;$ $y = 2^4 = 16$ 
$\therefore \;$ The solution to the given system of equations is $\;\;$ $x = \left\{\left(4, \; 16\right) \right\}$