Solve the following system of equations:
$\begin{cases}
	x + y = 4 + \sqrt{y^2 + 2} \\
	\log x - 2 \log 2 = \log \left(1 + \dfrac{1}{2} y\right)
\end{cases}$
Given system of equations: 
$x + y = 4 + \sqrt{y^2 + 2}$ $\;\;\; \cdots \; (1)$ 
$\log x - 2 \log 2 = \log \left(1 + \dfrac{1}{2} y\right)$ $\;\;\; \cdots \; (2)$ 
We have from equation $(2)$, 
$\log x - \log 4 = \log \left(1 + \dfrac{y}{2}\right)$ 
i.e. $\;$ $\log \left(\dfrac{x}{4}\right) = \log \left(1 + \dfrac{y}{2}\right)$ $\;\;\; \cdots \; (3)$ 
Taking antilog on both sides of equation $(3)$ gives 
$\dfrac{x}{4} = 1 + \dfrac{y}{2}$ 
i.e. $\;$ $x - 4 = 2y$ $\;\;\; \cdots \; (4)$ 
In view of equation $(4)$ equation $(1)$ becomes 
$2y + y = \sqrt{y^2 +2}$ 
i.e. $\;$ $3y = \sqrt{y^2 + 2}$ 
i.e. $\;$ $9y^2 = y^2 + 2$ 
i.e. $\;$ $8y^2 = 2$ 
i.e. $\;$ $y^2 = \dfrac{1}{4}$ $\implies$ $y = \pm \dfrac{1}{2}$ 
When $y = \dfrac{-1}{2}$, we have from equation $(4)$ 
$x = 4 - 2 \times \dfrac{1}{2} = 3$ 
Substituting $\left(x, y\right) = \left(3, \dfrac{-1}{2}\right)$ in equation $(1)$ gives 
$3 - \dfrac{1}{2} = 4 + \sqrt{\dfrac{1}{4} + 2}$ 
i.e. $\;$ $\dfrac{5}{2} = 4 + \dfrac{3}{2}$ 
i.e. $\;$ $\dfrac{5}{2} = \dfrac{11}{2}$ $\;$ which is not true. 
$\implies$ $\left(3, \dfrac{-1}{2}\right)$ is not a valid solution. 
When $y = \dfrac{1}{2}$, we have from equation $(4)$ 
$x = 4 + 2 \times \dfrac{1}{2} = 5$ 
Substituting $\left(x, y\right) = \left(5, \dfrac{1}{2}\right)$ in equation $(1)$ gives 
$5 + \dfrac{1}{2} = 4 + \sqrt{\dfrac{1}{4} + 2}$ 
i.e. $\;$ $\dfrac{11}{2} = 4 + \dfrac{3}{2}$ 
i.e. $\;$ $\dfrac{11}{2} = \dfrac{11}{2}$ $\;$ which is true. 
$\therefore \;$ The solution to the given system of equations is $\;\;$ $x = \left\{\left(5, \; \dfrac{1}{2}\right) \right\}$