Find the tangent to the parabola $\;$ $y^2 = 16x$ $\;$ making an angle of $\;$ $45^\circ$ $\;$ with the $X$ axis.
Let the equation of the tangent be 
$y = mx + \dfrac{a}{m}$ $\;\;\; \cdots \; (1)$ $\;\;\;$ where $m$ is the slope of the tangent 
The tangent makes an angle of $45^\circ$ with the $X$ axis. 
$\therefore \;$ $m = \tan 45^\circ = 1$ 
Given: $\;$ Equation of parabola: $\;\;\;$ $y^2 = 16x$ $\;\;\; \cdots \; (2)$ 
Comparing equation $(2)$ with the standard equation of parabola $\;$ $y^2 = 4ax$ $\;$ gives 
$4a = 16$ $\implies$ $a = 4$ 
Substituting the values of $m$ and $a$ in equation $(1)$ gives 
$y = 1 \times x + \dfrac{4}{1}$ 
i.e. $\;$ $y = x + 4$ $\;\;\; \cdots \; (3)$ 
Equation $(3)$ is the required equation of tangent.