Find the vertex, axis, focus and directrix of the parabola $\;$ $\left(y + 3\right)^2 = 4x + 4$.
Equation of given parabola: $\;$ $\left(y + 3\right)^2 = 4x + 4$ 
i.e. $\;$ $\left(y + 3\right)^2 = 4 \left(x + 1\right)$ $\;\;\; \cdots \; (1)$ 
To shift the origin to the point $\left(-1, -3\right)$, 
let $\;$ $x + 1 = X$ $\;\;\; \cdots \; (2a)$ $\;$ and $\;$ $y + 3 = Y$ $\;\;\; \cdots \; (2b)$ 
In view of equations $(2a)$ and $(2b)$, equation $(1)$ becomes 
$Y^2 = 4 X$ $\;\;\; \cdots \; (3)$ 
-  Vertex of equation $(3)$ is $\;$ $\left(0, 0\right)$ 
 i.e. $\;$ $X = 0, \;\;\; Y = 0$
 When $\;$ $X = 0$
 $\implies$ $x + 1 = 0$ $\;$ i.e. $\;$ $x = -1$ $\;\;\;$ [by equation $(2a)$]
 When $\;$ $Y = 0$
 $\implies$ $y + 3 = 0$ $\;$ i.e. $\;$ $y = -3$ $\;\;\;$ [by equation $(2b)$]
 $\therefore \;$ Vertex of equation $(1)$ is $\;$ $\left(-1, -3\right)$
 
-  Axis of equation $(3)$ is $\;\;$ $Y = 0$ 
 $\therefore \;$ Axis of equation $(1)$ is $\;\;\;$ $y + 3 = 0$ $\;\;\;$ [by equation $(2b)$]
 i.e. $\;$ $y = -3$
 
-  Comparing equation $(3)$ with the standard equation of parabola $\;\;$ $Y^2 = 4a X$ $\;\;$ gives
 
 $a = 1$
 $\therefore \;$ Focus of equation $(3)$ is $\;\;\;$ $\left(a, 0\right) = \left(1, 0\right)$
 $\implies$ $X = 1, \;\;\; Y = 0$
 When $\;$ $X = 1$
 $\implies$ $x + 1 = 1$ $\;$ i.e. $\;$ $x = 0$ $\;\;\;$ [by equation $(2a)$]
 When $\;$ $Y = 0$
 $\implies$ $y + 3 = 0$ $\;$ i.e. $\;$ $y = -3$ $\;\;\;$ [by equation $(2b)$]
 $\therefore \;$ Focus of equation $(1)$ is $\;\;\;$ $\left(0, -3\right)$
 
-  Directrix of equation $(3)$ is $\;\;\;$ $X = -a$ 
 i.e. $\;$ $X = -1$
 i.e. $x + 1 = -1$ $\;\;\;$ [by equation $(2a)$]
 $\therefore \;$ Directrix of equation $(1)$ is $\;\;\;$ $x + 2 = 0$