Find the equation of the hyperbola if its asymptotes are parallel to $\;$ $x + 2y - 12 = 0$ $\;$ and $\;$ $x - 2y+ 8 = 0$, $\;$ $\left(2,4\right)$ is the center of the hyperbola and it passes through $\left(2,0\right)$.
Equations of the given straight lines are 
$x + 2y - 12 = 0$ $\;\;\; \cdots \; (1)$ $\;$ and $\;$ $x - 2y + 8 = 0$ $\;\;\; \cdots \; (2)$ 
Slope of equation $(1)$ is $= m_1 = \dfrac{-1}{2}$ 
Slope of equation $(2)$ is $= m_2 = \dfrac{1}{2}$ 
$\because$ $\;$ the asymptotes are parallel to the given lines [equations $(1)$ and $(2)$], 
$\therefore$ $\;$ the slopes of the asymptotes are $\dfrac{1}{2}$ and $\dfrac{-1}{2}$ 
Let the equations of the asymptotes be 
$y = \dfrac{1}{2}x + p$ $\;\;\; \cdots \; (3a)$ $\;$ and $\;$ $y = -\dfrac{1}{2}x + q$ $\;\;\; \cdots \; (3b)$ 
where $p$ and $q$ are the Y intercepts. 
Solving equations $(3a)$ and $(3b)$ simultaneously gives the point of intersection of the asymptotes. 
$\therefore$ $\;$ We have from equations $(3a)$ and $(3b)$ 
$\dfrac{1}{2}x + p = \dfrac{-1}{2}x + q$ $\implies$ $x = q - p$ 
Substituting the value of $x$ in equation $(3a)$ gives 
$y = \dfrac{1}{2} \left(q - p\right) + p$ $\implies$ $y = \dfrac{1}{2} \left(p + q\right)$ 
The asymptotes intersect at the center. 
Given: Center of hyperbola $= \left(2, 4\right)$ 
$\therefore$ $\;$ We have $\;$ $q - p = 2$ $\;\;\; \cdots \; (4a)$ 
and $\;$ $\dfrac{1}{2} \left(p + q\right) = 4$ $\implies$ $p + q = 8$ $\;\;\; \cdots \; (4b)$ 
Solving equations $(4a)$ and $(4b)$ simultaneously we have, 
$2q = 10$ $\implies$ $q = 5$ 
Substituting the value of $q$ in equation $(4a)$ gives 
$p = q - 2 = 3$ 
$\therefore$ $\;$ The equations of the asymptotes are 
$y = \dfrac{1}{2}x + 3$ $\;\;$ i.e. $\;$ $x - 2y + 6 = 0$ 
and $\;$ $y = \dfrac{-1}{2}x + 5$ $\;\;$ i.e. $\;$ $x + 2y - 10 = 0$ 
$\therefore$ $\;$ The combined equations of the asymptotes is 
$\left(x - 2y + 6\right) \left(x + 2y - 10\right) = 0$ $\;\;\; \cdots \; (5)$ 
The equation of the hyperbola differs from the combined equation of the asymptotes by a constant. 
$\therefore$ $\;$ The equation of the hyperbola is of the form 
$\left(x - 2y + 6\right) \left(x + 2y - 10\right) + k = 0$ $\;\;\; \cdots \; (6)$ 
The required hyperbola passes through the point $\left(2, 0\right)$. 
$\therefore$ $\;$ We have from equation $(6)$, 
$\left(2 - 0 + 6\right) \left(2 + 0 - 10\right) + k = 0$ 
$\implies$ $k = 64$ 
Substituting the value of $k$ in equation $(6)$, the equation of the required hyperbola is 
$\left(x - 2y + 6\right) \left(x + 2y - 10\right) + 64 = 0$