If $\displaystyle \int \limits_{\sqrt{2}}^{k} \dfrac{dx}{x \sqrt{x^2 - 1}} \; dx = \dfrac{\pi}{12}$, obtain k.
Let $I = \displaystyle \int \limits_{\sqrt{2}}^{k} \dfrac{dx}{x \sqrt{x^2 - 1}} \; dx$ $\;\;\; \cdots \; (1)$ 
Put $x = \sec \theta$ $\;\;\; \cdots \; (2)$ 
Differentiating equation $(2)$ gives 
$dx = \sec \theta \tan \theta \; d\theta$ $\;\;\; \cdots \; (2a)$ 
From equation $(2)$, $\theta = \sec^{-1}x$ 
$\therefore \; \text{When } \begin{cases}
x = \sqrt{2}, & \theta = \sec^{-1} \left(\sqrt{2}\right) = \dfrac{\pi}{4} \\
x = k, & \theta = \sec^{-1} \left(k\right)
\end{cases}$ $\;\;\; \cdots \; (2b)$ 
$\therefore$ $\;$ In view of equations $(2)$, $(2a)$ and $(2b)$,  equation $(1)$ can be written as 
$\begin{aligned}
I & = \int \limits_{\frac{\pi}{4}}^{\sec^{-1} \left(k\right)} \dfrac{\sec \theta \; \tan \theta \; d \theta}{\sec \theta \; \sqrt{\sec^2 \theta - 1}} \\\\
& = \int \limits_{\frac{\pi}{4}}^{\sec^{-1} \left(k\right)} d \theta \\\\
& = \left[\theta\right]_{\pi / 4}^{\sec^{-1} \left(k\right)} \\\\
& = \sec^{-1} \left(k\right) - \dfrac{\pi}{4} \;\;\; \cdots \; (3)
\end{aligned}$ 
Given $I = \dfrac{\pi}{12}$ $\;\;\; \cdots \; (4)$ 
$\therefore$ $\;$ We have from equations $(3)$ and $(4)$, 
$\sec^{-1} \left(k\right) - \dfrac{\pi}{4} = \dfrac{\pi}{12}$ 
i.e. $\sec^{-1} \left(k\right) = \dfrac{\pi}{12} + \dfrac{\pi}{4} = \dfrac{\pi}{3}$ 
$\implies$ $k = \sec \left(\dfrac{\pi}{3}\right) = 2$