Find the area of the largest rectangle that fits inside a semicircle of radius 10 units. One side of the rectangle is along the diameter of the semicircle.
Let radius of semicircle $= r$ 
Let length of rectangle $= 2\ell$ 
Let breadth of rectangle $= b$ 
From the figure, $r^2 = \ell^2 + b^2$ 
$\implies$ $\ell = \sqrt{r^2 - b^2}$ $\;\; \cdots$ (1) 
Area of rectangle $=A= 2\ell b$ 
Substituting the value of $\ell$ from equation (1) gives 
$A = 2b \sqrt{r^2 -b^2}$ 
For maximum area, $\dfrac{dA}{db}=0$ 
Now, $\dfrac{dA}{db} = 2\sqrt{r^2 - b^2} + \dfrac{2b}{2 \sqrt{r^2-b^2}}\times \left(-2b\right)$ 
i.e. $\dfrac{dA}{db} = 2 \sqrt{r^2 - b^2} - \dfrac{2b^2}{\sqrt{r^2 - b^2}}$ 
i.e. $\dfrac{dA}{db} = \dfrac{2r^2 - 4b^2}{\sqrt{r^2 - b^2}}$ $\;\; \cdots$ (2) 
$\therefore$ $\dfrac{dA}{db} = 0$ $\implies$ $\dfrac{2r^2 -4b^2}{\sqrt{r^2 - b^2}} = 0$ 
i.e. $2b^2 = r^2$ 
$\implies$ $b = \dfrac{r}{\sqrt{2}}$ 
Substituting the value of b in equation (1) gives 
$\ell = \sqrt{r^2 - \dfrac{r^2}{2}} = \dfrac{r}{\sqrt{2}}$ 
Now from equation (2) we have 
$\dfrac{d^2 A}{db^2} = \dfrac{\sqrt{r^2 - b^2}\left(-2b\right)-\left(2r^2-4b^2\right) \times \dfrac{\left(-2b\right)}{2\sqrt{r^2-b^2}}}{r^2 - b^2}$ 
i.e. $\dfrac{d^2A}{db^2} = \dfrac{2b\left(r^2-2b^2-r^2+b^2\right)}{\left(r^2-b^2\right)\sqrt{r^2-b^2}}$ 
i.e. $\dfrac{d^2 A}{db^2} = \dfrac{-2b^3}{\left(r^2 - b^2\right) \sqrt{r^2 - b^2}}$ 
$\therefore$ $\dfrac{d^2A}{db^2} \bigg |_{b=\frac{r}{\sqrt{2}}} = \dfrac{\dfrac{-2r^3}{2\sqrt{2}}}{\left(r^2 - \dfrac{r^2}{2}\right)\sqrt{r^2 - \dfrac{r^2}{2}}} $
$= \dfrac{\dfrac{-2r^3}{2\sqrt{2}}}{\dfrac{r^3}{2\sqrt{2}}} = -2 < 0$ 
$\implies$ Area A is maximum when $\ell = \dfrac{r}{\sqrt{2}}$ and $b = \dfrac{r}{\sqrt{2}}$ 
$\therefore$ Maximum area of the rectangle $=2 \times \dfrac{r}{\sqrt{2}} \times \dfrac{r}{\sqrt{2}} = r^2$ 
Given: radius of semicircle $= r = 10$ units 
$\therefore$ Maximum area of the rectangle $= 100$ sq units
